Syllabus of Zoology

For Master of Science

Under Choice Based Credit System

Academic Session

w.e.f. 2020-2022 onwards

BINOD BIHARI MAHTO KOYALANCHAL UNIVERSITY, DHANBAD, JHARKHAND

Table of Contents

Sl. No.	Topic/ Title	Page Nos.
1.	List of Members Studies of CBCS P.G.	3
	Syllabus	
2.	Course Structure as per CBCS)	4-6
3.	M.Sc. Semester I	7-15
4.	M.Sc. Semester II	16-26
5.	M.Sc. Semester III	27-36
6.	M.Sc. Semester IV	36-60

Members of Board of Studies of CBCS Post-Graduate Syllabus as per Guidelines of the Binod Bihari Mahto Koyalanchal University, Dhanbad

COURSE STRUCTURE

Semester Wise Examination/Course Structure for Science Faculty

Semester	Paper Code (Credit, Lectures)	Paper Name Foundation of	Full Marks	End Semester Marks	Mid Semester (Internal) Marks (Written 20 marks) + Day to Day assessment includes extracurricular activities (5 marks) + Attendance (5 marks) 30
I	ZOO-F-101 (5 Credits, 60 Lectures + 15 Tutorials)	Zoology			
	ZOO-C-102 (5 Credits, 60 Lectures + 15 Tutorials)	Core Animal Diversity (Non- Chordate & Chordate)	100	70	30
	ZOO-C-103 (5 Credits, 60 Lectures + 15 Tutorials)	Core Endocrinology, Reproductive Biology & Developmental Biology	100	70	30
	ZOO-C/P-104 (5Credits, 75x2 Lectures)	Practical	100	70	30
II	ZOO-S-205 (5 Credits, 60 Lectures + 15 Tutorials)	Skill development Course (SEC) Bioinformatics & Biostatistics	100	70	30
	ZOO-C-206 (5 Credits, 60 Lectures + 15 Tutorials)	System Physiology & Biochemistry	100	70	30
	ZOO-C-207 (5 Credits, 60 Lectures + 15 Tutorials)	Immunology & Microbiology Page 4 of 63	100	70	30

	ZOO-C/P-208 (5 Credits, 75x2 Lectures)	Practical	100	70	30
III	ZOO-A-309 (5 Credits, 60 Lectures + 15 Tutorials)	Open Elective Medical Zoology Human Disease	100	70	30
	ZOO-C-310 (5 Credits, 60 Lectures + 15 Tutorials)	Cell Biology & genetics	100	70	30
	ZOO-C-311 (5 Credits, 60 Lectures + 15 Tutorials)	Environmental Biology & Toxicology	100	70	30
	ZOO-C/P-312 (5 Credits, 75x2 Lectures)	Practical	100	70	30
IV	ZOO-E-413A/ ZOO-E-413B/ ZOO-E-413C (5 Credits, 60 Lectures + 15 Tutorials)	A. Fish Diversity & Fish Biology B. Molecular Biology C. Insect Diversity and Insect Biology	100	70	30
	ZOO-E-414A/ ZOO-E-414B/ ZOO-E-414C (5 Credits, 60 Lectures + 15 Tutorials)	A. Applied Fish Biology B. Advanced Molecular Biology C. Agricultural Entomology	100	70	30
	ZOO-E/P-415A/ ZOO-E/P-415B/ ZOO-E/P-415C (5 Credits, 75x2 Lectures)	Practical	100	70	30
	ZOO-D-416 (5 Credits, 150 Lectures)	Dissertation/ Project	100	70	30

Attendance (in Percentage)	Marks
Attendance up to 75%	1 Mark
Attendance From 75% - 80%	2 Marks
Attendance From 80% - 85 %	3 Marks
Attendance From 85% - 90%	4 Marks
Attendance More than 90%	5 Marks

Mid Semester/ Internal Assessment Examination Marks

30

The Mid Semester/ Internal Assessment Examination shall have three Components

- a) Two Semester Internal Assessment test (SIA) of 20 Marks each
- b) Class Attendance Score of 5 Marks
- c) Day to day and extracurricular activities of 5 Marks

Best of two applicable for computation of marks for SIA

Semester Internal Assessment Test

Written examination – 20 Marks

- ❖ In all six questions are to be set in Two Groups A & B and four questions are to be answered.
- ❖ Group A: Q No. 1 will be compulsory which will include MCQ type carrying one mark each (1x5=5).
- ❖ Group B: Rest five questions will be descriptive answer type are to be set and examinees are required to answer any three, each carrying Five marks (5x3=15).

SEMESTER – I, COMPULSORY FOUNDATION COURSE

PAPER –	Foundation of Zoology	F.M=100
ZOO – F – 101	Foundation of Zoology	(End Sem = 70 + Mid Sem = 30)

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A and B.
- ❖ Group A will be comprised of question no. 1 which will consist of two parts I & II. Part I will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part II will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- ❖ Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact Hour
	GROUP - A	
1	Animal Systematics and Histochemical Techniques	
	 1.1. Importance and application of biosystematics in biology. 1.2. Chemotaxonomy, Cytotaxonomy, Molecular taxonomy 1.3. Species and Species concept. 1.4. Synthetic theory of Evolution 	08
2	Fundamentals of Histochemistry 2.1 Histochemistry: Types of Histochemical stains and their principle 2.2 General protein localization by Mercury Bromophenol Blue 2.3 Proteins with – NH2 groups by Ninhydrin-Schiff reaction 2.4 General lipids by Sudan Black B method 2.5 DNA by Feulgen reaction 2.6 DNA and RNA by Methyl green-pyronin	10
3	. Histotechniques: 3.1 Fixation and tissue processing: 3.2 Types of Fixative 3.2.1 Fixative 3.2.2 Dehydration 3.2.3 Clearing 3.2.4 Embedding 3.3 Microtomy 3.4. Staining of Paraffin section 3.4.1. Principle and method of staining 3.4.2. Histological stains	08

	GROUP_B	
4	General Principle and applications of 4.1. Spectrophotometry: Visible, UV visible	06
	4.2. Centrifuge: its types and uses in biology.	
5	Separation technique:	
	5.1. Electrophoresis: Principles and application	03
	5.2. Type: Native, SDS PAGE and Agarose gel electrophoresis.	
6	Immunological techniques: Principle of ELISA and its types	03
7	Microscopy, principle & applications 7.1. Fluorescence microscope 7.2. Electron microscope 7.2.1. TEM 7.2.2. SEM	06
8	Molecular biology techniques 8.1 Southern blotting 8.2. Northern blotting 8.3. Western blotting 8.4 DNA Sequencing	04
9	Autoradiography: 9.1. Radioactive isotopes 9.2. Method and application of autoradiography	03
10	Polymerase chain reaction (PCR)	03

Recommended

- 1. A Text Book of Histology, William Bloom and Don W Fawcett, Saunders
- 2. Bancroft, J.D. & Stevens, A. Theory and Practice of Histological techniques, Churchill- Livingstone, 2002
- 3. Casselman, W.G.B.: Histochemical techniques, John Wiley, 1959
- 4. Pearse, A.G.E.: Histochemistry; Theoretical and Applied (Vol. I, II & III), (4th ed.), Churchill-Livingstones, 1980-1993
- 5. Staining methods Histologic and Histochemical, J F A McMannus and Rubert W Mowry, Harper and Row 1964

SEMESTER – I, Animal Diversity (Non- Chordate & Chordate)

PAPER – ZOO – C – 102	Animal Diversity (Non-	F.M=100 (Extn.70 + Int.30)
	Chordate & Chordate)	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will be comprised of question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Торіс	Contact Hour
	GROUP - A	1
1	Origin of metazoan	03
2	Origin of Coelom-Acoela, Pseudocoela, Schizocoela and Enterocoela	03
3	Locomotion 3.1 Modern concept of Flagellar and Ciliary movement in protozoa 3.2 Foot and its modification in Mollusca 3.3. Hydrostatic movements in Echinodermata	06
4	Nutrition and Digestion: Filter feeding in Polychaeta.	02
5	Respiration 5.1 Respiratory pigments. 5.2 Respiration in Arthropoda 5.2.1 Branchial/Gill respiration 5.2.2 Respiration by Book lungs 5.2.3 Tracheal respiration 5.3 Respiration in Mollusca 5.3.1Aquatic respiration 5.3.2 Aerial respiration	10
6	Excretion in invertebrates: Excretion and osmoregulation in annelids.	02
7	Invertebrate larval forms and their evolutionary significance 7.1 Larval forms of Trematoda and Cestoda 7.2 Larval forms of Echinodermata	04

8	Miscellaneous topics:	06
	8.1 Structural peculiarities and affinities of Onychophora	
	8.2 Adaptive radiation in Polychaetes	
	8.3 Ancestral mollusc and derivation of different modern classes	

	GROUP - B				
9	Origin of the following:	04			
	9.1 Birds				
	9.2 Mammals				
10	Skull in Reptiles	02			
11	Rhyncocephalia	02			
12	Dinosaurs and their causes of extinction	02			
13	Modification of palate in birds	03			
14	Aerodynamics and energetic of flying and gliding in birds	03			
15	Dentition in mammals	03			
16	Primitive mammals:	02			
	17.1 Prototheria				
	17.2 Metatheria				
17	Aquatic mammals.	03			

Books Recommended

- 1. Boolootian, R. A. and Stiles, K. A., College Zoology, 10th edition, Macmillan Publishing Co., Inc. New York, 1981.
- 2. Colbert, E. H., Morales, M. and Minkoff, E. C. Colbert's Evolution of the Vertebrates: A history of the backboned animals through time, 5th edition, John Wiley Liss, Inc., New York, 2002.
- 3. Goodrich, E. S, Studies on Structure and Development of Vertebrates, Dover Publication, New York, 1958.
- 5. Marshall, A. J., Biology and Comparative Physiology of Birds, Volume I & II, 1960.
- 6. McFarland, W. N., Pough, F. H., Cade, T. J. and Heiser, J. B., Vertebrate Life, Macmillan Publishing Co., Inc., New York, 1979.
- 7. Moore, J. A., Biology of Amphibia, Academic Press, 1964.
- 8. Parker, T. S. and Haswell, W. A., Text Book of Zoology, Vol. II, ELBS,
- 9. Romer, A. S. and Parsons, T. S., The vertebrate body, 6th edition, CBS Publishing Japan Ltd, 1986.
- 10. Sinha, A. K., Adhikari, S. and Ganguli, B. B.: Biology of Animals, Vol. II, New Central Book Agency, Calcutta, 1988.
- 11. Young, J. Z. The life of vertebrates, 3rd edition, ELBS with Oxford University Press, 1981.
- 12. Vishwanath, Vertebrate Zoology

SEMESTER - I,

PAPER - ZOO - C - 103	Endocrinology,	F.M=100 (Extn.70 + Int.30)
	Reproductive Biology &	
	Developmental Biology	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- ❖ Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- ❖ Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group. Each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact Hour
	GROUP - A	11001
		102
1	Hormones	03
	1.1.Biosynthesis of hormones	
	1.1.1. Amino acid derived hormones (T ₃ , T ₄)	
	1.1.2. Steroid hormones: Mineralocorticoids,	
	glucocorticoids & Sex hormones.	
	1.2. Hormone Action	
	1.2.1. Types of receptors, second messenger, cytosolic	
	receptors and their action	
2	Neuroendocrines and neurohormones	03
3	Pineal in vertebrates: Its structure, hormones, and their function	06
4	Structure and function of Parathyroid	02
5	Hormonal control of	10
	5.1. Fuel metabolism: Insulin, Glucagon, and Epinephrine	
	5.2. Hormonal regulation of Osmoregulation	
	5.3. Hormonal control of calcium regulation	
		1

6	Histophysiology of mammalian gonads	02
	6.1. Histophysiology of testes	
	6.2. Histophysiology of ovary	
7	Semen formation and composition	04
8	Pregnancy	06
	8.1. Hormonal regulation of implantation and pregnancy	
	8.2. Placental hormones	
	8.3. Parturition	
	8.3.1. Stages of Parturition	
	8.3.2. Hormonal interplay	
9	Lactation	02
	9.1. Structure and functions of mammary gland	
	9.2. Role of various hormones in lactation	

	GROUP - B		
10	Fertilization	04	
	10.1. Molecular events of fertilization		
	10.2. Prevention of polyspermy		
11	Laying down of embryonic body plan	05	
	11.1. Organizer concept		
	11.2. Cell lineage in Coenorhabditis elegans		
12	Cell differentiation	04	
	12.1. Myogenesis of skeletal muscle		
	12.1.1. Formation		
	12.1.2. Regeneration		
	12.1.3. Hypertrophy		
	12.2. Haemopoeitic stem cells and their diversification		
	12.3. Haemoglobin biosynthesis		
13	Genes controlling embryogenesis	05	
	13.1. Determination of anterior and posterior axes of <i>Drosophila</i>		
	13.2. Determination of dorso-ventral axis in <i>Drosophila</i>		
	13.3. Homoeotic genes in <i>Drosophila</i>		
	13.4. Homoeobox genes in mammals		

SEMESTER – I, Practical based on ZOO C 101,102 and 103 (Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – C/P – 104	PRACTICAL	F.M=100 (Extn.70 + Int.30)
Practical		Marks distribution
1. Dissection:		6X2=12
1.1. Vertebrate		06
1.2. Invertebrate		06
2. Slide preparation		04
3. Spotting		2X10=20
3.1. Slides (04), (02 Inv	vertebrate, 02 Vertebrate)	2X4=08
3.2. Museum Specimen	ns (04)	2X4=08
[(02) Invertebrate, (02) Vertebrate]	
3.3. Bones (02)		2X2=04
4. Reproductive Physiology &	k Endocrinology	5×2=10
4.1. Reproductive phy	vsiology 05	
4.2. Endocrinology	05	
5. Population genetics/ biosys	tematics	04
6. Class record, poster/model	s/collection	10
7. viva-voce		10
TOTAL		70

List of Practical

1. Dissection:

- 1.-Local bony fish- Afferent, Efferent and cranial nervous system
- 2'- Prawn-Nervous system and appendages of Prawn
- 3. Earthworm –Nerve ring, Reproductive system and digestive system
- 2. Slide preparation- Gemmule of sponge, Obelia colony, Statocyst of prawn, ovary of earthworm, Daphnia, placoid and cycloid scale.
- 3. Museum Specimens- Euspongia, Physalia, Metridium, Taenia, Ascaries, Nereis, Aphrodite, Limulus, Octopus, loligo, sepia, Echinus, Asterias, Holothuria, Exocoetus, Hyla Racophorous, Draco, Phrynosoma, Bat
- 4. Permanent Slides: Invertebrate& Vertebrate (General histology, reproductive organs and endocrine glands)
- 5. Bones: Fish & Mammals, Different types of Teeth of mammals

- 6. Bio-Systematic and Population genetics
 - 1. Preparation of Taxonomic Key
 - 2. Specimens/models showing convergent and divergent evolution Connecting link, living fossil, serial homology.
 - 3. Estimation of gene and genotype frequency in human population.

SEMESTER - II

PAPER – ZOO – S – 205	Bioinformatics &	F.M=100 (Extn.70 + Int.30)
	Biostatistics	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- ❖ Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact Hour
	GROUP - A	
1	Introduction to computational biology & bioinformatics. Branches of	03
	bioinformatics.	
2	Nature of biological data. Biological data formats. Concepts of digital	03
	library.	
3	Bioinformatics databases:	06
	3.1 Literature databases (PubMed),	
	3.2 Primary nucleotide sequence databases (NCBI, EMBL, DDBJ),	
	3.3 Protein sequence databases (SwissProt, PIR),	
	3.4 Sequence motif databases (Pfam, PROSITE),	
	3.5 Structure databases (PDB, SCOP, CATH).	
4	Algorithms and bio-tools:	02
	4.1 Sequence alignment and database similarity searching.	
	4.2 Scoring matrix, BLAST series, PSI- BLAST, FASTA.	
	4.3 Global Alignments – Needleman Wunsch Algorithm,	

	4.4 Local Alignments – Smith Waterman Algorithm.	
	4.5 Multiple sequence alignments (ClustalW).	
5	Basic concepts on phylogenetic markers and molecular phylogeny.	10
6	Structural bioinformatics: prediction of secondary & tertiary structure of proteins.	02
7	Human genome projects.	04
8	Other biological tools and resources: EMBOSS, Expasy, OMIM, etc.	06
9	Introduction of Nanotechnology, 9.1 Role of bioinformatics in nanotechnology. 9.2 Current progress in biomedical nanotechnology with bioinformatics.	05

	GROUP - B	
10	Statistics of location and dispersion Measures of central value- Mean, Median, Mode. Measures of dispersion- standard deviation, coefficient of variation. Skewness and Kurtosis.	04
11	Sampling statistics and testing of hypothesis. Procedure for testing hypothesis.	02
12	Test of significance based on small samples and large samples ('t' test and 'z' test), Chi-square test	02
13	Analysis of variance- One-way and Two-way ANOVA.	04
14	Correlation: 14.1. Definition types of correlation 14.2 Methods of studying correlation 14.3. Karl Pearson coefficient of correlation 14.4. Rank correlation method.	04
15	. Regression analysis: 15.1 Regression lines 15.2. Regression equations.	02

Suggested readings/Text Book (s):

- 1. Barnes & Gray (ed): Bioinformatics for geneticists, Wiley (2003)
- 2. Lesk: Bioinformatics, Oxford (2003, Indian ed)
- 3. Westhead et al: Bioinformatics Instant Notes, Viva Books (2003, Indian ed)
- 4. Prakash S Lohar, Bioinformatics, M J P publishers, Chennai
- 5. David W Mount, Bioinformatics Sequence and Genome analysis 2e. CBS Publishers New Delhi.
- 6. Bioinformatics: Principles and Applications by Z. Ghosh and B. Mallick, Oxford University Press.
- 7. Bioinformatics: Sequence and Genome Analysis by D.W. Mount, Cold Spring Harbor Laboratory
- 8. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins by A.D. Baxevanis and B.F.F. Ouellette, Wiley-interscience.
- 9. Understanding Bioinformatics by Marketa Zvelebil and Jeremy Baum, Garland Science.
- 10. Modern statistics for the Life Sciences by A. Grafen and R. Hails, Oxford University Press. 4.
- 11.An Introduction to Biostatistics by Thomas Glover and Kevin Mitchell, Waveland PrInc.
- 12. Biostatistics: Principles and Practice 1e. Prasanna Samuelson, Solomon Christopher, B Antonisamy
- 13. Introduction to Biostatistics and Research Methods 5th Edition, SUNDAR RAO, RICHARD
- 14. Introduction to Nanotechnology, By Charles P. Poole, Jr., Charles P. Poole, Frank J.Owens, Autor Owens, 2003 Wiley Interscience.
- 15. Integrating Biologically-Inspired Nanotechnology into Medical Practice.B.K. Nayak (K.M. Centre for Post Graduate Studies, India), Anima Nanda (Sathyabama University, India) and M. Amin Bhat (Sathyabama University, India)

SEMESTER - II

PAPER - ZOO - S - 206	System Physiology &	F.M=100 (Extn.70 + Int.30)
	Biochemistry	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- ❖ Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	No. Topic	Contact
5.1.0.	Top.	Hour
	GROUP - A	
1	Environmental Physiology	03
	1.1. Elementary idea of stress and strain.	
	1.2. Physiological response to:	
	1.2.1. Cold and Heat	
	1.2.2. Pressure (high and low)	
	1.2.3. Electromagnetic radiations.	
	1.3. Thermoregulation in vertebrates.	
	1.3.1. Ectotherms and Endotherms.	
	1.3.2 Physiological adaptations in Endotherms to extreme	
	cold and Extreme heat.	
2	Excretion	03
	2.1 Mechanism of Urine formation	
	2.1.1 Glomerular filtration	
	2.1.2 Tubular reabsorption and secretion	
	2.1.3 Counter current mechanism	
	2.1.4 Hormonal regulation (ADH & Renin-Angiotensin	
	system)	

3	Nervous system	06
	3.1 Axonal transmission	
	3.1.1 Neuron and its types	
	3.1.2 Genesis of membrane potential and action potential	
	3.1.3 Sodium-potassium pump	
	3.2 Synaptic transmission	
	3.2.1 Types of synapses and synaptic knobs	
	3.2.2 Excitatory and inhibitory post-synaptic potential	
4	Muscle	02
	4.1 Ultrastructure of skeletal muscle fibers	
	4.2 Muscle proteins	
	4.3 Sequence of events in contraction and relaxation of skeletal	
	muscle	
	4.4 Energetics of muscle contraction	
	4.5 Muscle twitch, summation, tetanus and fatigue	
	4.6 Isotonic and isometric contraction	
5	Cardiovascular System: myogenic heart, ECG – its principle and significance, cardiac cycle.	10
6	Physiology of sense organs – Vision and hearing.	02

	GROUP - B		
7	Amino acid	04	
	7.1 Structure and Classification		
	7.2 Reactions due to functional groups.		
	7.3 Titration curve		
8	Proteins:	04	
	8.1Primary structure, peptide bond.		
	8.2 Secondary structure-α helix, β pleated sheet & Protein folding.		
	8.3 Ramachandran plot		
	8.4 Tertiary and Quaternary structure – Bonds stabilizing structure,		
	Domains		
	And motifs.		
9	Enzymes	08	
	9.1 Classification and general properties		

	9.2 Enzyme kinetics Derivation of Michaelis-Menten equation	
	9.3 Enzyme regulation and inhibition.	
10	Carbohydrates: Structure and physiological significance	10
	10.1Structure and Properties of monosaccharaides.	
	10.2 Structure and Properties of Oligosaccharides.	
	10.3 Polysaccharide of physiological significance.	
	10.4. Carbohydrate Metabolism:	
	10.4.1. Glycolysis & Krebs cycle: Pathway and regulation.	
	10.4.2. Oxidative metabolism: electron transport chain,	
	oxidative	
	Phosphorylation,	
	10.4.3. Gluconeogenesis.	
	10.4.4. Hexose Monophosphate shunt	
11	Lipids:	04
	11.1. Lipids of physiologic (Clinical) significance, membrane	
	lipids,	
	Cholesterol	
	11.2. Synthesis and β oxidation of fatty acids.	
12	. Errors in Biosynthetic Pathways:	04
	12.1. Inborn Errors of Amino acid catabolism.	
	12.2. Alkaptonuria,	
	12.3. Albinism	
	12.4. Phenylketonuria	

Books Recommended

- 1. Ganong: Review of Medical Physiology (21st Ed.), Lang Medical Publications, 2003
- 2. Guyton and Hall: Text Book of Medical Physiology (10th Ed.), W.B. Saunders, 2001
- 3. Keel et al: Samson Wright's Applied Physiology (13th Ed.), Oxford Press, 1989
- 4. Murray et al: Harper's Illustrated Biochemistry (26th Ed.), Appleton & Lange, 2003
- 5. West: Best and Taylor's Physiological Basis of Medical Practice (11th Ed.)

SEMESTER – II Immunology & Microbiology

PAPER - ZOO - S - 207	Immunology & Microbiology	F.M=100 (Extn.70 +
		Int.30)

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact Hour
	GROUP - A	
1	Introduction to Human Immune System and Immunity	03
	1.1. Types of Immunity	
	1.1.1: Innate Immunity	
	1.1.2: Acquired Immunity	
2	Cells and Organs of Immune System	03
	2.1. Immuno-Competent Cells and Accessory Cells	
	2.2. Lymphoid Organs	
	2.2.1: Primary Lymphoid organs: Thymus, Bone marrow,	
	Bursa Fabricius	
	2.2.2: Secondary Lymphoid Organs: Lymph Nodes, Spleen,	
	MALT, Tonsils & GALT	
3	T- cell - generation activation and differentiation	06
4	B-cell - generation activation and differentiation	02
5	Lymphocyte traffic	10
6	Antigen	02

		T
	6.1 Nature of antigens and super antigens	
	6.2 Antigenicity and immunogenicity	
	6.3 Epitopes and hapten	
7	Major Histocompatibility Complex (MHC) in mouse and HLA system in	02
	human	
8	Organization and expression of lg genes, Generation of antibody diversity.	03
9	Cytokines: Structure and functions and their receptors	02
10	Complement system: Component and functions	02
11	Hypersensitivity	02
	11.1. Types of Hypersensitivity	
	11.2. Immediate type Hypersensitivity	
	11.3. Delayed type Hypersensitivity	
12	Transplantation Immunology	02
13	Autoimmunity	03
	13.1 Organ specific autoimmune diseases (Myasthenia gravis,	
	IDDM, Hashimoto	
	Thyroditis)	
	13.2 Systemic Autoimmune Diseases (SLE, Rheumatoid arthritis,	
	Multiple	
	Sclerosis)	
	13.3 Evidence Implicating the CD4+ T Cell, MHC and TCR in	
	autoimmunity	
	1	1

	GROUP - B		
15	Methods in microbiology:	03	
	15.1 Sterilization		
	15.1.1. Physical method		
	15.1.2. Chemical method		
	15.2 Culture media		
	1.2.1. Chemically Defined Media		
	1.2.2. Complex Media		
	1.2.3. Anaerobic Growth Media		
	1.2.4. Special Culture Techniques		

	15.2.5. Selective and Differential Media 15.2.6. Enrichment Culture 15.2.7. Pure Culture Techniques	
16	Bacteria 2.1. Types and Structure 2.2. Bacterial growth and growth curve kinetics	02
17	Virus 17.1 Outline of Classification 17.2 Structure of viruses 17.3 Reproduction 17.3.1 Lytic cycle 17.3.2 Lysogenic cycle 17.3.3 Role of lambda repressor	02
18	Pathogenic microbes 4.1 HIV 4.2 Rabies 4.3 Prions	02
19	Antibiotics: Chemistry and their mode of action	04
20	Vaccine: 6.1. Types 6.2. Vaccine preparation.	05

Books Recommended

Books Recommended Immunology:

- 1. Alberts et al: Molecular Biology of cell (4th Edition) Garland Science, 2002.
- 2. Ivan Roitt and Peter J Delves: Roitt's Essential Immunology (10 th Ed.) Oxford, Backwill,

Science Publication London.

3. Elgert: Immunology understanding the immune system, John Willy & Sons, Inc. Publication,

New York, 1996.

- 4. Abbas et al. cellular and Molecular Immunology (3rd Ed.) W.B. Saunders Company, 2000
- 5. Kuby Immunology Current edition.

Microbiology

- 1. Brock Biology of Microorganisms (13th ed.) Michael T. Madigan, John M. Martinko, David A. Stahl, Pearson Publication
- 2. Microbiology an Introduction: 11 e. Gerard J. Tortora, Berdell R. Funke, Christine
- L. Case, Pearson Publication 2007
- 3, Microbiology, 5th Edition, Lansing M. Prescott, ISBN: 0-07-282905-2,

- 4. Sherris Medical Microbiology, An Introduction to Infectious Disease, Current edition.
- 5. Michael C Pelczar, Microbiology, Current edition.
- 6. Text Book of Microbiology, Edited by CKJ Panikar, 5 e. 2005, Orient Longman
- 7. Microbiology 5e. Michael C Pelczar, ECS Chan, Noel R Kraig, TMH 1986
- 8. A Textbook of Microbiology, by R.C. Dubey and D.K. Maheshwari, 2010, S Chand & Co.

SEMESTER – II Based on 205,206 & 207

(Credit – 05, Lectures – 60, Tutorials - 15)

PRACTICAL

Practicals	Marks Distribution
1. Physiology & Biochemistry	
1.1. Physiological Experiment	10
1.2.Biochemistry	10
2. Tools & Techniques	
2.1. Apparatus (one)	05
2.2. Technique (One)	05
3. Immunology	10
4. Microbiology	10
5. Class Record, chart,/models	10
6. Viva-voce	10

Total Marks-70

F.M=100 (Extn.70 + Int.30)

List of Practicals

PAPER-ZOO-S-208

- 1. Physiology Experiment:
 - 1.1. Determination of blood pressure by sphygmomanometer.
 - 1.2. Demonstration of diffusion process/osmosis across a membrane
 - 1.3. Determination of clotting and bleeding time
 - 1.4. Haemin Crystal preparation
 - 1.5. Estimation of Hb concentration.

2. Biochemistry:

- 2.1. Construction of models of bio molecules by wire and beads.
- 2.2. Detection of presence of blood glucose by Benzedrine test
- 2.3. Quantitative estimation of glucose, urea and Protein in the unknown sample
 - 3. Study of laboratory apparatus:-
 - 3.1 Autoclave
 - 3.2. Microtome
 - 3.3. pH meter
 - 3.4. Centrifuge
 - 3.5. Colorimeter
 - 3.6. Spectrophotometer
 - 4. Techniques:
 - 4.1. Microtomy-
 - 4.1.1. Fixation
 - 4.1.2. Block preparation:
 - 4.1.3. Section cutting
 - 4.1.4. Spreading and
 - 4.1.5. Staining of tissues section.
 - 4.2. Histochemical demonstration:
 - 4.2.1. Sudan black for lipid
 - 4.2.2. PAS for carbohydrate
 - 4.2.3. Bromophenol blue for protein
 - 4.3. Paper chromatography
 - 5. Microbiology:
 - 5.1. Sterilisation technique
 - 5.2. Media preparation for microbial culture
 - 5.3. Gram staining of bacteria
 - 6. Immunology:
 - 6.1. Antibody sensitivity test
 - 6.2. Study of Immune cells in a blood film.
 - 6.3. Demonstration of agglutination reaction by blood grouping.
 - 6.4. Mancini's radial Immunodiffusion test
 - 6.5. Ouchterlony double Immunodiffusion test

SEMESTER – III Open Elective

PAPER – ZOO – A – 309	Medical Zoology: Human	F.M=100 (Extn.70 + Int.30)
	Diseases	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **!** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries4 marks (2x4=8). There will be no option in question no. 1
- ❖ Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No. Topic	Torio	Contact
S. NO.	. No. Topic	Hour
	GROUP - A	-[
1	Basic concept of parasite, host, mode of infection, Host-parasite	20
	relationship and prophylaxis	
	1.1. Protozoan diseases:	
	1.1.1 Entamoeba histolytica – causative pathogen for	
	diarrhoea, dysentery and liver abscess in human	
	1.1.2. <i>Leishmania donovani</i> —causative pathogen for Kala-	
	azar	
	1.1.3. <i>Plasmodium vivax</i> – Malaria- with special reference:	
	Life Cycle, Pathogenicity, prophylaxis and Treatment	
2	Helminthes (worm) Diseases:	15
	2.1 Ascaris lumbricoides – causative pathogen for Ascariasis	
	2.2 Taenia solium and T saginata- with special reference: Life	
	Cycle, Pathogenicity, Prophylaxis and Treatment	
3	Arthropods as Vector of Human Disease	15
	3.1 Mode of Transmission of Disease by Arthropod vector	

3.2 Comparative Bionomic & Disease Transmitted By	
3.2.2: Anopheles (Female): Malaria	
3.2.3: Culex (Female): Filaria	
3.2.4: Aedes: Dengue, Zika virus infection	
3.2.5: National Filarial Control Programme (NFCP)	
3.2.6: National Malarial Eradication Programme (NMEP)	

GROUP - B		
4	4. Human disease caused by viruses & bacteria: Causative agents &	10
	pathogenicity	
	4.1 Diseases caused by Viruses	
	4.1.1 Contagious and respiratory Air borne viral diseases:	
	common cold and different types of flu, and CoVid	
	4.1.2 Gastrointestinal and exanthematous (skin) viral	
	diseases: Measles and Chicken Pox	
	4.1.3 Hepatic viral diseases: Hepatitis	
	4.1.4 Hemorrhagic viral Diseases: Yellow fever and Dengue	
	fever	
	4.1.5 Neurologic viral diseases: Polio	
	4.1.6 Auto immune diseases: AIDS	
	4.2 Diseases caused by bacteria	
	4.2.1 Air borne bacterial diseases: Tuberculosis and	
	Diphtheria	
	4.2.2 Food and water borne bacterial diseases: Botulism,	
	Cholera and Typhoid.	
	4.3 Eradication Programme for Polio- Pulse Polio.	
	4.4 National AIDS control Programme.	

Suggested book in Medical Zoology

 ${\bf 1.\ Parasitology\ by\ K.\ D.\ Chaterjee\ 21\ edition}$

ONLINE TOOLS AND WEB RESOURCES

- https://www.skillstat.com/tools/ecg-simulator
- https://www.youtube.com/watch?v=ZoGfQM5JCnI
- $\bullet\ https://www.youtube.com/watch?v=Qbnz4_qed9Q\&t=276s$

- https://www.youtube.com/watch?v=djAxjtN_7VE
- https://www.youtube.com/watch?v=9SUHgtREWQc&t=188s
- $\bullet\ https://www.youtube.com/watch?v=fHUzVqoDnts$

SEMESTER – III

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact Hour
	GROUP - A	
1	Biomembrane	
	1.1 Molecular organization, Fluid-Mosaic model	07
	1.2 Transport across the cell membrane	
2	Nucleus - Structure of Nuclear membrane and nuclear transport	05
3	Protein Trafficking:	
	3.1 Protein synthesis on free and bound polysomes	
	3.2 Uptake into ER	06
	3.3 Membrane proteins	
	3.4 Golgi sorting	
	3.5 Post translational modification	
4	Cell Signalling:	
	4.1. Intracellular receptors	
	4.2. Cell surface receptors	06
	4.2.1. Ion channel linked receptors	
	4.2.2. G-Protein linked receptors	

	4.2.3. Enzyme linked receptors	
	4.3 Signal transduction pathway	
5	Cytoskeleton- Structure and function	
	5.1. Microfilaments	
	5.2. Intermediate filaments	04
	5.3. Microtubules	
	5.4. Intracellular transport-role of kinesin and dynein	
6	Cell cycle:	
	6.1. Cyclins and	
	6.2. CDK Regulation	02
	6.3. Checkpoints	
7	Programmed cell death (Apoptosis).	01
8	Biology of Chromosome-Ultra structure of Chromatin fibre	04
9	Telomere and its maintenance.	02
10	Cell and its society	
		03
	10.1 Cell junction and Focal adhesion	
	10.2 Cell-Cell adhesion	

e maps, mapping with molecular markers	04
chondrial and chloroplast gene	02
hondrial and chloroplast gene	02
hondrial and chloroplast gene	
ombination	02
ila and Human	01
cing	
	01
	ombination ila and Human icing

	15.1 c- DNA library	
	15.2 Genomic library	
16	Reverse genetics: Antisense RNA	01
17	Transposons / Mobile genetic element	03
	7.1 Transposable elements in Bacteria	
	7.2 Transposable elements in Eukaryotes	
	7.3 Transposable elements in Human	
18	Gene regulation	03
	18.1 Regulation of Prokaryotic gene expression	
	18.1.1 Inducible and Repressible gene expression	
	18.1.2 Positive and negative control of gene expression	
	18.1.3. Lac operon	
	18.1.3.1. Induction	
	18.1.3.2.Catabolic repressor	
	18.1.3.3.Use of IPTG	
	18.1.4. Trp operon	
	Repression	
	Attenuation	
19	Genetics of cancer	03

Book recommended

Cell Biology:

- 1. Alberts et al: Molecular Biology of the Cell, Garland, Current edition.
- 2. Lodish et al: Molecular Cell Biology (5th Ed.), Freeman, Current edition
- 3. DeRobertis & DeRobertis: Cell & Molecular Biology, Lea & Febriger, 1987
- 4. Berg et al.: Biochemistry (5th Ed.), Freeman, 2002
- 5. Michael Jr.: Microbiology, Tata McGraw Hill, 1993
- 6. Gerald Karp: Cell and Molecular Biology Concepts and Experiments, Current edition.

Genetics:

- 1. Brooker: Genetics: Analysis and Principles (Addison-Wesley, 1999)
- 2. Gardner et al: Principles of Genetics (John Wiley, 1991)
- 3. Griffith et al: Modern Genetic Analysis (Freeman, 2002)

- 4. Hartl& Jones: Essential Genetics: A Genomic Perspective (Jones &Bartlet, 2002)
- 5. Lewin, Genes VIII (Wiley, 2004)
- 6. Russell: Genetics (Benjamin Cummings, 2002)
- 7. Snustad& Simmons: Principles of Genetics (John Wiley, 2003).

SEMESTER – III

PAPER – ZOO – S – 311	Environmental Biology and	F.M=100 (Extn.70 + Int.30)
	Toxicology	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering the entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8) .There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact
		Hour
	GROUP - A	
1	Population Ecology	
	1.1 Characteristics of population:	
	1.1.1Population size and density	
	1.1.2Dispersion	
	1.1.3Age structure	
	1.1.4 Natality	
	1.1.5 Mortality: Survivorship curves, Life Tables 1.1.6 Biotic Potential	
	1.1.7 Carrying Capacity	10
	1.2 Population Dynamics	10
	1.2.1 Population growth and attributes	
	1.2.2 Exponential growth	
	1.2.3 Logistic growth	
	1.2.4 Growth curves: Sigmoid and J shaped growth curve	
	1.3 Regulation of population growth: Interaction	
	1.3.1 Intraspecific interaction	
	1.3.2 Interspecific interaction	
	1.3.2.1Commensalism	
	1.3.2.2 Mutualism	
	1.3.2.3 Proto co-operation	
	1.3.2.4 Prey and predator interaction	

	1 2 2 5 11 4 4	
	1.3.2.5 Host parasite interaction	
	1.3.3 Competition: 1.3.3.1 Lotka Voltera model	
2	Organization of Biotic Community	
2	2.1Characteristics of Biotic community	
	2.2 Classification and components of community	
	2.3 Structure of community	^ -
	2.3.1 Quantitative characters	07
	2.3.2 Qualitative characters	
	2.3.3Synthetic characters	
	2.4 Ecological Dominants, Ecotypes, Ecotone and Edge Effect.	
3	Ecological Niche	
3	3.1 Concept of Niche	
	3.2 Niche Dimension	0.0
	3.3 Niche Breadth	08
	3.4 Niche Overlaps	
	3.5 Gause's Principle	
4	Biodiversity	
4	4.1 Levels of biodiversity	
	4.2 Uses of biodiversity	
	4.3 Distribution of biodiversity	0.4
	4.4 Hot spots of biodiversity	04
	4.5 Biodiversity Indices	
	4.6 Threats and conservation of biodiversity with special reference	
	to India	
5	Community function: Productivity	
3	5.1 Concept of productivity- Primary and Secondary Productivity,	
	5.2 Factors affecting productivity.	08
	5.3 Methods of measurement of productivity: Primary and	
	Secondary	
6	Ecological restoration	
U	6.1 Terms and definition	0.4
	6.2 Bioremediation concept, Environmental limitation for	04
	bioremediation	
7	Biosensors	01
	GROUP - B	
8	Environmental wastes management: Domestic/MSW, Vermicomposting,	04
	agricultural and hazardous wastes management	
9	Major Anthronogonia Clobal anvironmental problems	04
9	Major Anthropogenic Global environmental problems 9.1 Acid rain	04
	9.1 Acturality 9.2 Green house effects	
	9.2 Green house effects 9.3 Smog	
	9.4 Ozone depletion	
	9.5 Heavy metal toxicity: Mercury, Lead and Cadmium	
	9.5 Food additives and their effects	
	9.7 Public Health and occupational Hazards due to environmental Disasters:	
	9.7.1 Pneumoconiosis	
	7.7.1 FIICUIIIOCOIIIOSIS	

	9.7.2 Silicosis	
	9.7.3 Asbestosis	
10	Environmental Impact Assessment (EIA), purpose, aim, process	02
11	Sustainable development: Cost benefit analysis and its application.	02
12	Toxicology:	06
	12.1 Xenobiotics and Toxicants: Routes and rate of	
	administration.	
	12.2 Synergism and Antagonism	
	12.3 Basic principle of Dose-Response relationship	
	12.4 Biotransformation of Toxicants; Translocation of Toxicants	
	Antidotes	
	12.5 Toxicity tests: LD 50; LC 50.	

Books Recommended

- 1. Field Sampling: Principles and Practices in Environmental Analysis, Conklin, A.R. Jr., (2004), CRC Press
- 2. . 2. Principles and Standards for Measuring Primary Production, Fahey, T.J. and Knapp, A.K., (2007), Oxford University Press, UK
- 3. Ecological Modeling, Grant, W.E. and Swannack, T.M., (2008), Blackwell.
- 4. 4. Fundamental Processes in Ecology: An Earth system Approach, Wilkinson, D.M., (2007), Oxford University Press, UK
- 5. Ecology Environment and Resource conservation: J S Singh, S P Singh and S R Gupta, Anamaya Publishers, New Delhi
- 6. Ecology Concept and application: Manuel C Molles Jr, McGraw Hill
- 7. 7. Living in the environment: G Tyler Miller, Thompson

SEMESTER – III

(Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – S – 312	Practical	F.M=100 (Extn.70 + Int.30)
-----------------------	-----------	----------------------------

Practicals	Marks Distribution
1. Environmental Biology	20
2. Cell Biology	15
3. Genetics	15
4. Class Records, Poster/ Models	10
5. Viva- Voce	10

Total = 70 Marks

List of Practicals

- 1. Environmental Biology
 - 1. Study of adaptation in: Aquatic Insects, Fresh water fish, higher vertebrates
 - 2. Identification of some common plankton
 - 3. Water analysis for Dissolved oxygen, Free Carbon dioxide, Total alkalinity and chloride in water.
 - 4. Determination of population structure by quadrate method.
 - 5. Estimation of Biodiversity indices.
 - 6. Preparation of ppm solution

2. Cell Biology

- 1. Preparation of mitotic chromosomes from onion root tip
- 2. Preparation of meiotic chromosome from Testis of Grasshopper
- 3. Preparation of Polytene chromosomes from Drosophila chironomous.
- 4. Staining of Mitochondrial from human cheek epithelial cells.
- 5. Demonstration of Barr body in cheek epithelial cells/ hair follicle.

3. Genetics

- 1. Proof of Mendelian ratio of law of inheritance using pea seed samples
- 2. Determination of gene mapping.
- 3. Study of Drosophila mutant.

SEMESTER - IV

Discipline Centric Elective: Fish and Fisheries

(Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 413A	Fish Diversity & Fish	F.M=100 (Extn.70 + Int.30)
	Biology	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	
		Hour
	GROUP - A	
1	Outline classification of fishes by L.S. Berg up to order with reference to living fresh and marine fishes of India	08
2	Origin and evolution of fishes	07
3	General organization of specialized groups of fishes	
	3.1. Holocephali	07
	3.2. Coelacanths	07
	3.3. Dipnoi	
4	Fins	
	4.1. Unpaired fins (Dorsal and Ventral)	
	4.2 Paired fins (Pelvic and Pectoral)	04
	4.3. Caudal fins and its modifications	
	4.4. Origin of paired fins	
5	Locomotion in teleost	02
	5.1. Locomotion in water (swimming)	02

	5.2. Locomotion on land	
	5.3. Gliding in air	
6	Aquatic respiration in teleost	
	6.1. Structure of gills	05
	6.2. Opercular movement	03
	6.3. Gaseous exchange and ventilation	
7	Accessory respiratory organs	03
8	Digestive system in teleost	
	8.1. Alimentary canal and its modifications in relation to food and	04
	feeding habits	
9	Lateral line system	
	9.1. Lateral line canal and its specialization in cartilaginous and	
	bony fishes	
	9.2. Neuromast organs: Special types of neuromast	
	9.3. Functions of lateral line system	

	GROUP - B			
10	Excretion and osmoregulation	04		
	10.1. Excretion: Physiology of excretion in teleost			
	10.1.1. Excretion in freshwater teleost			
	10.1.2. Excretion in marine teleost			
	10.2. Osmoregulation			
	10.2.1. Osmoregulation in stenohaline teleost's: freshwater			
	teleost (hyper-osmotic) and salt water teleost (hypo-osmotic)			
	10.2.2. Osmoregulation in Euryhaline teleost			
11	Histophysiology of endocrine organs/tissues	04		
	11.1. Pituitary			
	11.2. Thyroid			
	11.3. Adrenocortical tissue			
	11.4. Corpuscles of Stannius			
	11.5. Ultimobranchial			
	11.6. Europhysis			
12	Adaptations in teleost	02		

	12.1. Electric organs	
	12.2. Hill stream	
	12.3. Deep sea fishes	
	12.4. Bioluminescence	
	12.5. Colouration	
	12.6. Cave dwelling	
13	Ornamental fishes	02
14	Larvivorous fishses	
15	Transgenic fishes	04

- 1. Brown, M.E. Physiology of fishes, Vols. 1 and 2, Academic press, 1957
- 2. Hoar, W.S. & Randall, O.J. Fish Physiology, Vols I-X, Academic Press, 1969- onwards
- 3. Lagler, K. F., Bardach J.E., Miller R.R. and May Passino, D.R. Ichthyology, John Wiley, 2003.
- 4. Norman and Greenwood: A History of Fishes, Third Ed., Ernest Bvenn Limited, 1975.
- 5. S.S. Khanna and H. R. Singh. A textbook of Fish Biology and Fisheries, Narendra Publishing House, 2003.

SEMESTER – IV MOLECULAR BIOLOGY

(Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 413B | Molecular Biology | F.M=100 (Extn.70 + Int.30)

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **!** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8) .There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Tarria	Contact
S. NO.	Topic	
1	GROUP - A	
1	Molecules of Central dogma of gene expression	
	1.1DNA: Chemical composition of DNA	
	1.2 DNA structure-single stranded DNA, double stranded	
	DNA-A, B, C DNA and Z DNA Structure,	
	1.2.1 Types folding of DNA and their biological	
	functions- Quadruplex DNA, Interrupted DNA,	
	Overlapping DNA and Super coiling of DNA.	
	1.3 Changes from one form to the other, and the enzymes	10
	involved, concept of Linking numbers, linking number	10
	paradox.	
	1.3.1 Importance of super helical DNA and their	
	structural forms.	
	1.3.2Types of Topoisomerases and their function in	
	adding or removing super helical structures.	
	1.4 Characteristic features of highly repetitive DNA;	
	Tandemly repetitive DNA and Mini and microsatellite	

	DNA and Insertional elements and their role and	
	importance	
	1.5 C value paradox- Resolving the paradox by DNA-DNA and DNA-RNA hybridization and their kinetics. Cot curves	
2	1. RNA-structure	
	2.1 rRNAs; Structural features of rRNAs- prokaryotic and	
	eukaryotic.	
	2.2 tRNAs: structural features, their anticodon feature.	07
	2.3 mRNAs- prokaryotic and eukaryotic mRNAs,	
	structural features,	
	2.4 Sn-RNAs, Sno RNAs, RNAi	

	GROUP - B		
3	DNA replication		
	3.1. Prokaryotic DNA replication; replication origin and site		
	and structure and DNA Ter regions and structure.		
	3.2. DNA polymerases, composition and features,		
	replication factors and the mechanism of		
	replication and regulation of replication.		
	3.3. Replication of single stranded DNA (E. coli), Theta		
	replication.		
4	Eukaryotic-replication	08	
	4.1. Origins, replication, initiation complexes and their		
	assembly, licensing factors,		
	4.2. DNA polymerases and their composition, telomerase		
	and mode of action, replication factors,		
	4.3. Organelle genome and composition, replication origins,		
	Enzymes and factors involved in the Mechanism of		
	replication of mitochondrial DNA and Chloroplast DNA.		
5	Transcription in Eukaryotes and role of transcription factors	08	
	5.1 Post transcriptional processing; Capping, Tailoring,		
	splicing and alternate splicing, mRNA stability, RNA		
	degradation, RNA editing.		
l	5.2 Translation of Protein in Eukaryotes.		

5.3. Gene silencing, DNA methylation and acetylation, Histone code and RNA interference.

- 1. Alberts, B., Bray, D. and Hopkin, K. (2004). Essential Cell Biology. 3rd edition. Garland Science, U.S.A 2. Cox, M., Michael. Nelson, L. D. (2008). Principles of Biochemistry. 5th edition. W.H. Freeman and company, New York.
- 3. Dale, W.J. and Schontz, V.M.(2007). From Genes to Genomes. John Wiley & son's ltd., England.
- 4. David. A. Micklos, Greg. A. Freyer and David A. Crotty, (2003). DNA Science A First Course, 2nd edition, Cold Sprind Harbor Laboratory Press, New York.
- 5. Gerald Karp (1996). Cell and Molecular Biology Concepts and Experiments. John Wiley and Sons, Inc., New York.
- 6. Griffiths AJF, H.J. Muller., D.T. Suzuki, R.C. Lewontin and W.M. Gelbart (2000). An introduction to genetic analysis. W.H. Freeman, New York
- 7. Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, S. Lawrence Zipursky and James Darnell. (2003). Molecular Cell Biology, W.H. Freeman and Company, New York.
- 8. Kieleczawa, J. (2006). DNA Sequencing II. Jones and Bartlett Publishers, Canada.
- 9. Koenberg, A. and Baker, A.T. (2005). DNA Replication. 2nd edition. University Science Book, California. 10. Miglani G.S. (2002). Advanced Genetics, Narosa Publishing House, New Delhi.

- 11. Nickoloff, A. J. and Hoekstra, F.M. (1998). DNA Damage and repair. Volume II. Humana Press Inc., New Jersey.
- 12. Watson, Baker, Bell, Gann, Levine and Losick. (2006). Molecular Biology of the Gene, 5 th edition, Pearson Education.
- 13. Watson, J.D. T. A. Baker, S.P. Bell, A. Lann. M. Levine and R. Losick. (2004). Molecular Biology of genes, V edition, Perason Education RH Ltd., India.

SEMESTER - IV

Discipline Centric Elective: Entomology (Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 413C	Insect Diversity and Insect	F.M=100 (Extn.70 + Int.30)
	Physiology	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact
	Торіс	Hour
	GROUP - A	-
1	Classification & Phylogeny of Insects:	
	1.1. Classification of the Apterygota orders:	
	1.1.1. Thysanura	
	1.1.2. Diplura	
	1.1.3. Collembola	
	1.2. Classification of Exopterygota:	
	1.2.1 Orthoptera	08
	1.2.2. Hemiptera	
	1.3. Classification of Endopterygota	
	1.3.1. Lepidoptera	
	1.3.2. Diptera	
	1.3.3. Hymenoptera	
	1.3.4. Coleoptera.	
2	Structure and Function	15

2.1 In	ntegument
	2.1.1. Structure and Chemical composition
	2.1.2. Cuticular modification
	2.1.3. Apolysis and Ecdysis
	2.1.4. Sclerotization
	2.1.5. Modification
2.2. Γ	Digestive system
	2.2.1. General Structure and Modification of Alimentary
Canal	
	2.2.2. Salivary glands
	2.2.3. Mechanism of Digestion
	2.2.4. Micro organization in Intestine of Insects
2.3. R	Respiratory System
	2.3.1. Structure of spiracles and its type in different insects
	2.3.2. Mechanism of respiration in terrestrial insects
	2.3.3. Mechanism of respiration in Aquatic and Parasitic
insects	
2.4. C	Circulatory System
	2.4.1. Structural components of haemolymph and its
function.	
	2.4.2. Structure of Heart and its functioning mechanism
	2.4.3. Accessory pulsatile organs

	GROUP - B		
3	Excretory System	04	
	3.1 Structure of Malpighian tubules and its association with		
	alimentary		
	canal		
	3.2 Other organs of excretion in Insects		
	3.3 Metabolic pathway of Nitrogenous excretion		
4	Sensory Organs	04	
	4.1. Mechanoreceptors		
	4.2. Chemoreceptors		
	4.3. Visual Organs (Compound eye)		

5	Effector Organs	03
	5.1. Light Producing organs	
	5.2. Mechanism of light production	
6	Insect Endocrine organs	08
	6.1. NSC & Neurohormones	
	6.2. Corpora allata and JH	
	6.3. Prothoracic gland and MH	
	6.4. Hormonal control of Ecdysis and Metamorphosis	
	6.5. Hormonal control of Reproduction	
	6.6 Pheromones	
7	Male and Female Reproductive system and its Physiology.	05
8	Diapause in Insects.	02

- 1. Chapman: The insect structure and function. 4th Ed. ELBS 1998.
- 2. Imms: A general textbook of Entomology Vol. I and Vol. II Asia Publishing House 1977.
- 3. Klowden: Physiology system in Insects Academic Press 2002.
- 4. Me Gavin: Essential Entomology Oxford Univ. Press 2001, New Delhi.
- 5. Srivastava: A textbook of Applied Entomology Vol. I &II Kalyan Publishers New Delhi, 1988; 1993.
- 6. Wiggles worth: Principles of Insects Physiology ELBS 1972.
- 7. Higman and Hill: Invertebrate Endocrinology.
- 8. Comprehensive insects Physiology, Biochemistry and Pharmacology. Executive edition G A Kerhut and Li Gilbert Vol. 1-3.

SEMESTER – IV Discipline Centric Elective: Fish & Fisheries

(Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 414A	Applied Fish Biology	F.M=100 (Extn.70 + Int.30)
-------------------------------	----------------------	----------------------------

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **!** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Торіс	Contact
		Hour
	GROUP - A	1
1	Physico-chemical of characteristics of (With special reference to India)	
	1.1. Marine	
	1.2. Fresh Water:	
	1.2.1. Lentic	07
	1.2.2. Lotic	
	1.2.3. Riverine system in India	
	1.3. Estuaries	
2	Fish farm construction & lay out	
	2.1. Site selection for Ideal Fish farm	
	2.2. Component ponds of a fish farm: Hatching ponds, Nursery	07
	Pond, Rearing & Stocking Ponds	
	2.3. Water & Soil: Physical and chemical properties	
3	Role of Plankton in fish Production	03
4	Nutritional value & economic importance of fishes	01
5	Fishing Gears, Nets and Crafts used in different types of water bodies	02
6	Feeds of Fishes	02

	6.1. Natural Feeds	
	6.2. Supplementary & artificial Feeds	
7	Fish Pathology, Etiology & therapy of diseases	
	7.1. Nutritional Disease	
	7.2. Bacterial Disease	
	7.3. Viral Disease	05
	7.4. Protozoan Disease	
	7.5. Helminthes Parasites	
8	Role of hormones in Fish breeding	04
	GROUP - B	
9	Collection of seeds from Natural Sources	04
10	Carp Culture in India: Extensive, Semi- Intensive & Intensive	02
11	Integrated Fish farming	02
	11.1 Fish cum Paddy farming	
	11.2. Fish cum animals	
	11.2.1. Poultry	
	11.2.2. Ducks	
	11.2.3. Pigs	
	11.3. Fish cum Makhana & Trapa	
12	Nursery management	03
	12.1. Rearing of Spawn to Fry	
	12.2. Fry to Fingerlings	
	12.3. Transport and marketing of fry & fingerlings	
13	Composite or Poly culture of fishes	03
	13.1. Methods of Culture	
	13.2. Constraints of Culture	
14	Culture of non-Fish Organism	04
	14.1. Prawn & Shrimp Culture in India	
	14.2. Edible Oyster	
	14.3. Culture of pearl Oyster	
15	Reservoir Fisheries	04
	15.1. Reservoirs of India	
	15.2. Pre & post management of reservoir	

16	Induced Breeding	03
	16.1. Technique of Hypophysation	
	16.2. Hapa Breeding	
	16.3. Bundh Breeding	
17	Special type of fish Farming	05
	17.1. Cage Farming	
	17.2. Pen culture	
	17.3. Sewage fed fisheries	
	17.4. Cold water fisheries	
18	Fish Spoilage	02
	18.1. Rigor mortis: Factors responsible for Rigor Mortis	
	18.2. Rancidity & Autolysis	
	18.3. Microbial Spoilage	
19	Fish Processing & Preservation	01

- 1. Srivastava, C.B.L. A Textbook of Fishery Science and Indian Fisheries, KitabMahal .1985
- 2. Fish and Fisheries of India, V G Jhingran
- 3. Fish and Fisheries of India, K Pandey and Shukla, Rastogi Publication
- 4. General and applied Ichthyology, Gupta and Gupta, S Chand and Co
- 5. Introduction to fishes, GopalJishrivastave,
- 6. Fresh Water fishes of India, K C Jayra

SEMESTER – IV

Discipline Centric Elective: Molecular Biology (Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 414B	Advanced Molecular	F.M=100 (Extn.70 + Int.30)
	Biology (Gene expression)	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- **A** Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Topic	Contact
3. 110.	Торіс	Hour
	GROUP - A	
1	CONCEPT OF GENE	
	1.1Genome sizes: kinds of genes, gene numbers, functional genes,	
	cryptic genes, pseudogenes, processed genes, overlapping genes,	
	family of genes.	
	1.2 Gene structure: Structural organization of prokaryotic and	
	eukaryotic genes-regulatory elements of genes (proximal or	08
	internal, including promoter, operator, activator and enhancers),	00
	coding region and terminal region of the genes.	
	1.3 Transcriptional Apparatus in prokaryotes: RNA polymerase	
	structure, subunits and their function; sigma factor, their character	
	and role; mechanism of transcription, initiation, elongation and	
	termination.	

2	REGULATION OF PROKARYOTIC GENES EXPRESSION AND	
	OPERONS	
	2.1 Genetic regulation of sporulation in B. subtilis, role of sigma	
	factors in sporulation.	
	2.2 Regulation of Lac operon, Tryptophan operon and Arabinose-	
	operon,	07
	2.3 Concept of regulons, stimulons, operons, global regulators.	
	2.4 Lambda phage: Regulation of lytic and lysogenic pathway in	
	lambda phage, cI-repressors, crorepressors, transcriptional	
	terminators and antiterminator, early and late genes, their	
	expression and regulation.	
	GROUP - B	
3	EUKARYOTIC GENE EXPRESSION	08
	3.1 DNA binding proteins- Concise account of Helix turn Helix	
	proteins, Helix loop helix proteins, Helix turn beta, Zinc finger	
	proteins, leucine zipper proteins, homeodomain proteins, beta	
	barrels, .	
	3.2 Transcription factors (TFs): Concept of activators, activator	
	domains, co-activators and mediator complex, enhancer proteins	
	and their binding factors,	
	3.3 DNA binding sequence elements, response element binding	
	factors and their role in general.	
	3.4 Mechanism of transcriptional initiation, elongation and	
	termination.	
4	EUKARYOTIC RNA POLYMERASE	06

- 4.1 RNAP-I: rRNA gene clustering, structural organization of rRNA genes, Regulatory regions (core sequences and upstream control elements), coding and terminal regions;
- 4.2 RNAP I enzyme subunits, its associated transcriptional factors and their role, mechanism of transcription-initiation, elongation and termination.
- 4.3 RNAP-II: Structural organization of regulatory, coding and terminal regions of housekeeping genes; Genes that are regulated in response to stimuli-light, chemicals and hormones, stage specific and tissue specific gene regulation.
- 4.4 RNAP-III: Regulatory elements, (internal promoters), coding and terminal regions of 7sLRNA gene, tRNA genes, and 5SrRNA genes; RNAP III enzyme and its composition, transcriptional factors, assembly of the same and the mechanism of transcription and termination.

- Benjamin Lewin (2004), Gene VIII, Published by Pearson Prints Hall, Pearson Education inc.
 Upper saddle River, New Jerssey-07458
- 2. Bruce Alberts, Julian Lewis, Alexander Johnson, J. Lewis, M. Raff (1994), Molecular Biology of the Cell, Garland Publisher Inc., New York
- 3. Buchnan and Grussem et al, (2000) Biochemistry and Molecular biology of Plants by 5th edition, Oxford University Campus
- 4. Cooper, G M The cell: A molecular approach. 2nd edition, (2000), ASM Press, Washington

- 5. Eduardo Diego Patricio De Robertis, EMF De Robertis (1988), Cell and molecular biology, International Ed. Inst. Med. Ltd
- 6. Gerald Karp (2003), Cell and Molecular Biology, 3rd edition, John Wiley & Sons Publishers.(Concepts and Experiments)
- 7. Glick B.R. & J. J. Pasternal, (1994), ASM Press, Washington, D. C. Molecular Biotechnology
- 8. Gupta, PK, (2004) Biotechnology and Genomics, Rastogi Publishers, Meerut.

SEMESTER – IV

Discipline Centric Elective: Entomology (Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 414C	AGRICULTURAL	F.M=100 (Extn.70 + Int.30)
	ENTOMOLOGY	

- **❖** In all nine questions are to be set of equal values and five questions are to be answered of which Question No. 1 will be compulsory.
- ❖ Questions will be grouped into two Groups A & Group B.
- ❖ Group A will comprise question no. 1 which will consist of two parts A & B. Part A will be MCQ type covering entire syllabus and carry one mark each (1x6=6). Part B will comprise short answer type questions. Each carries 4 marks (2x4=8). There will be no option in question no. 1
- * Rest of eight questions will be descriptive type, set from the whole syllabus in group B. Examinees are required to answer any four from this group, each carrying 14 marks.
- **❖** The question No. 9 will be short notes type, each carrying seven marks (7x2=14) in which only 2 should be answered out of four options.

S. No.	Tonio	Contact
S. No.	Topic	Hour
	GROUP - A	
1	Types of Pest and pest control.	08
2	Group characteristics of insecticide, structure and function of	
	2.1. Organochlorine,	
	2.2. Organophosphorus,	07
	2.3. Fumigants,	
	2.4. Chemosterilants	
	2.5. IGR (Insect Growth Regulator)	
3 Br	ief definition of Insecticide, Mode of action of insecticides; Metabolism	02
and its toxicity on humans		
4	Appliances used for insecticides	04
	4.1. Dusters	
	4.2. Sprayers	
5	Identification of pests, its seasonal history, biology, nature of damage and	02
	control measures of important pests of-	

5.1. Paddy pests	
5.2. Cotton pests	
5.3. Sugarcane pests	
5.4. Stored grains pests	
5.5 Vegetable pests	

GROUP - B		
6	Locust- Its life history, phase transition, periodicity, migration, biology and control measures	04
7	Biological control of pests:	02
	2.1. Definition, Agents of Biological Control	
	2.2. Parasites, Parasitoids, Predators and Pathogenic microorganism	
	2.3. Mass production, distribution, advantages and	
	disadvantages of Biological Control	
8	Integrated Pest Management (IPM): Other methods of Insect pest management	02
9	Pheromones-	02
	9.1. Pheromones production, and their use in pest surveillance and	
	management.	
10	Social Insects:	04
	10.1. Society of Insects, its social behaviour and management	
	10.2. Social organization of	
	10.2.1. Social organization of honey bee	
	10.2.2. Termites	
	10.2.3. Ants	
11	Economic Zoology: Apiculture, Sericulture and Lac culture	02
12	Management of Insects: Attractants, repellants, antifeedants	04
13	Forensic Entomology & it's application.	03

- 1. Atwal: Agricultural pests of India and south east Asia, Kalyani Publishers, 1986
- 2. Kumar and Nigam: Agricultural Entomology, Emkay Publication.3. Kumar and Nigam: Applied Entomology, Emkay Publication.

- 4. Applied Entomology: K K Nayer5. A Text Book of Agricultural Entomology: Hem Singh Pruthi, ICAR

SEMESTER – IV Discipline Centric Elective: Fish and Fisheries

(Credit - 05, Lectures - 60, Tutorials - 15)

PAPER – ZOO – E – 415A	Fish & Fisheries	F.M=100 (Extn.70 + Int.30)
	(Practical)based on ZOO E	
	413A & 414A	

	Practicals				Marks Distribution
1.	Major Dissect	ion (Bony fish)			10
		1.1.Afferent branchial	arteries		
		1.2.Efferent branchial	arteries		
		1.3.Cranial nerves			
2.	Minor dissecti	ion			05
		2.1.Weberian apparatu	S		
		2.2.Accessory respirato	ry organ		
		2.3. Pituitary gland			
		2.4. Gonads			
3.	Mounting				05
	C	3.1.Scales			
		3.2.fish fry			
		3.3.fingerlings			
4.	Identification	of two local fresh fishes	with morph	nometric meas	urements up to
	species.		-		$1\dot{0}$
5.	Spotting			2 Marks×10	= 20
	•	5.1. Bones	03		
		5.2. Histological slides	03		
		5.3. Net and Crafts	02		
		5.4.Adaptive features	02		
6.	Class record	•			10
7.	Viva-voce				10

TOTAL - 70

SEMESTER IV

Discipline Centric Elective: Molecular Biology

PAPER-ZOO-E-	Practical based on	F.M=100(Extn.70+Int.30)
415B	ZOO E 413B & 414B	

Time: 6 Hours	Full Marks: 70
1. Quantitative analysis of Protein/ DNA	12
2. Isolation and determination of size of DNA by AGE	12
3 Isolation of plasmid from bacteria	12
4. Spotting	2 x 6=12
5. Models /Charts/Sessional work	06
6. Practical records	06
7. Viva-voce	10

TOTAL - 70

List of suggested practical's:

- 1. Quantitative analysis of DNA.
- 2. Spectral analysis of Proteins.
- 3. Isolation of genomic DNA from plants / animals / microorganisms.
- 4. Separation of DNA by Agarose Gel Electrophoresis
- 5. Determination of molecular weight and quantification of DNA using AGE.
- 6. Isolation of plasmid and determination of purity.
- 7. Estimation of RNA from sample.
- 8. Restriction digestion of genomic DNA from plants/ animal tissue/ microorganisms.
- 9. Agarose gel electrophoresis of restriction fragment.
- 10. PCR amplification of DNA.
- 11. Extraction of total RNA from Plant tissue /animals/micro organisms
- 12. Separation of RNA through AGE.
- 13 For spotting- Instruments used in Molecular Biology, Photographs of Gel, Plasmid etc.

SEMESTER – IV

Discipline Centric Elective: Entomology (Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 415C	Practical based on ZOO E	F.M=100 (Extn.70 + Int.30)
	413C &414C	

Practicals	Marks	
Distribution		
1. Minor dissections and Temporary mounting	10	
2. Major dissections	10	
3. Spotting		
 a. Permanent slides: Mouth parts of male & female mosqu b. genitalia c. respiratory organs d. wings: Scales & whole mounts of wings of Dipteral & Hy 	· •	
e. endocrine organs	-	
4. Spotting of pests & Parasites		
a. Predators/ Venomous Insectsb. Beneficial insects		
c. Insect Catching Devices	6x2.5=15	
5. Study of common equipments used in insect control program	imes 05	
6. Taxonomic identification - Spotting (5 marks x2)	10	
7. Records and Sessional work	10	
8. Viva voce	10	

Total = 70

List of Practicals

1. Major Dissection:

General anatomy and nervous system of Cockroach, Honey bee Grasshopper

- 2. Minor Dissection and temporary mounting:
 - a) Tentorium of Cockroach,
 - b) Arista and Haltere of House fly,
 - c) Tympanum of Grasshopper,
 - d) Spiracle of Grasshopper / Cockroach,
 - e) Sting apparatus and Pollen basket of Honeybee,
 - f) Scales of Butterfly/ Moth,
 - g) Antennae of Termite & Coleoptera
- 3. Taxonomic description and identification of various insects belonging to the order: Phasmida, Isoptera, Dictyoptera, Hemiptera, Hymenoptera, Coleoptera.
- **4.** Study of permanent slides: Whole mount of mouth parts, antenna, wings, legs, and genitalia
- 5. Histological slides of

Digestive, Excretory, Reproductive, and Endocrine organs

- 6. Study of pests:

 a) Stored grains,
 b) Paddy,
 c) Wheat,
 d) Sugarcane,
 e) Termites,

SEMESTER – IV Dissertation (Credit – 05, Lectures – 60, Tutorials - 15)

PAPER – ZOO – E – 416	Dissertation	F.M=100 (Extn.70 + Int.30)
$\mathbf{A}^* / \mathbf{B}^* / \mathbf{C}^*$		

- **❖** Mid-Semester/Internal Assessment Examination = 30 marks
- End Semester Examination: Project model (if any) and the Project record notebook, Project presentation and viva-voce = 70 marks
 (Jointly conducted by One External & One Internal Examiners)

Overall project dissertation will be evaluated under the following heads:

- Motivation for the choice of topic
- Project dissertation design
- Methodology and Content depth
- Results and Discussion
- Future Scope & References
- Participation in Internship programme with reputed organization
- Application of Research technique in Data collection
- Report Presentation
- Presentation style
- Viva-voce

Note:

- (a) Each student must submit two copies of the dissertation work duly forwarded by the Head of the Department and duly signed by the supervisor concerned. The forwarded copies will be submitted to the concerned Department of University, for evaluation. The paper will consist of
 - Field work/Lab work related to the project
 - Preparation of dissertation based on the work undertaken.
 - Presentation of project works in the seminar on the assigned topic & open viva there on.
 - (b) Each student shall have to complete a project work on a topic allotted by his/her Project Guide/Supervisor/Department in Semester -IV. This is compulsory and the candidates shall ensure that his project is on a relevant topic completed by him

independently with the help and inputs from his/her guide/supervisor. Other guidelines pertaining to this paper shall be provided by the Department.

- (c) Student alone or in a group of not more than five, shall undertake one Project approved by the Subject Teacher/H.O.D. of the Department/College concerned. The progress of the Project shall be monitored by the faculty members at regular intervals.
- (d) Students will select topics for the project work in consultation with a teacher of the Department. The Seminar will be held in the concerned Department of University.

The Dissertation/Project shall be presented with the following specifications:

- (a) Size of Paper: A4. Dissertation/Project must be printed on one side of the paper.
- **(b) Font Type**: Times New Roman.
- (c) Font Size: Font size for English text is 12pt.
- (d) Font of Chapter Headings and Sub-Headings:
- Chapter headings may be written in all Capitals, bold text in font size 14
- Sub-headings are written with left margin alignment
- First level sub-headings are written in normal sentence case using bold text in point size 14
- Second level sub-headings are point size 13
- (e) Spacing and Paragraphing:
- Printing shall be in standardised form with 1.5 line spacing
- Leave as triple spacing (2 empty lines) in base font size 12 before and after subheadings and one empty line after all sub-headings
- Use one empty line between left-justified paragraphs
- **(f) Margin**: Left margin should be 4cm and right, top and bottom margin should be 2cm. No ornamental bordering of sides is permitted.
- (g) Page Numbering: Preliminary pages of the Dissertation/Project, i.e. those preceding in text are to be numbered in Roman numbered. Text should be numbered in Arabic beginning with Page No 1 on the first page of chapter 1
- (h) Preliminary sections of the Dissertation/Project should include, Declaration of Attendance, Certificate from Supervisor, Declaration by Candidate and Supervisor regarding Plagiarism, Acknowledgement, Table of Contents, List of Tables, List of Figures/Diagrams, List of Abbreviations (if any) and an Abstract of the Dissertation/Project.
- (i) Referencing and Citation Style: Citation i.e. a way of giving credit to individuals for their creative and intellectual works that you utilised to

support your research, differs by faculty in the style of ordering, punctuating and formatting of name, date, page, work etc. The referencing of work and Citation style in the Dissertation/Project submitted in Faculty of Science (Zoology) will be in **American Psychological Association (APA)** style (6th edition).

- **A*- Fish and Fisheries**
- **B*- Molecular Biology**
- C*- Entomology